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Abstract

An interpretation of the the “halo puzzle” in accelerators
based on quantum-like diffraction is given. Comparison
between this approach and the others based on classical
mechanics equations is exhibited.

1 INTRODUCTION AND FORMALISM

The use of a formalism that closely resembles quantum me-
chanics (quantum-like theory) in the description of a col-
lective motion of dense particles, has been proposed some
time ago [1]. Applications of the Schro¨odinger-type equa-
tions were made to many physical systems, such as plas-
mas, and beams in linear and circular accelerators, with a
suitable definition of the the characteristic parameters.

In this note we point out that, after linearizing the
Schrödinger-like equation, for beams in an accelerator one
can use the whole apparatus of quantum mechanics, with a
new interpretation of the basic parameters (for instance the
Planck’s constant�h �! � where� is the normalized beam
emittance) and introduce the propagatorK (xf ; tf jxi; ti)
of the Feynman theory for both longitudinal and transversal
motion. A procedure of this sort seems particularly effec-
tive for a global description of several phenomena such as
intrabeam scattering, space-charge, particle focusing, that
cannot be treated easily in detail by “classical mechanics”
and are considered to be the main cause of the creation of
the “Halo” around the beam line with consequent losses of
particles.

Let us indeed consider the Schr¨odinger like equation for
the beam wave function

i�@t = �
�2

2m
@2x + U (x; t) (1)

in the linearized caseU (x; t) does not depend on the den-
sity j j2. � here is the normalized transversal beam emit-
tance defined as follows:

� = m0c
�~� ; (2)

~� being the emittance usually considered, where as we
may introduce the analog of the De Broglie wavelength
as� = �=p. We now focus our attention on the one di-
mensional transversal motion along thex-axis of the beam
particles belonging to a single bunch and assume a Gaus-
sian transversal profile for a particles injected in to a cir-
cular machine. We describe all the interactions mentioned
above, that cannot be treated in detail, as diffraction effects
by a phenomenological boundary defined by a slit, in each
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segment of the particle trajectory. This condition should be
applied to both beam wave function and its corresponding
beam propagatorK. The result of such a procedure is a
multiple integral that determines the actual propagator be-
tween the initial and final states in terms of the space-time
intervals due to the intermediate segments.

K (x+ x0; T + � jx0; 0)

=

Z +b

�b

K (x+ x0; � jx0 + yn; T + (n� 1)� 0)

�K (x+ yn; T + (n� 1)� 0j

x0 + yn�1; T + (n� 2)� 0)

...

�K (x+ y1; T jx
0; 0) dy1dy2 � � � dyn (3)

where� = n� 0 is the total time of revolutionsT is the time
necessary to insert the bunch (practically the time between
two successive bunches) and(�b;+b) the space interval
defining the boundary conditions. Obviouslyb andT are
phenomenological parameters which vary from a machine
to another and must also be correlated with the geometry
of the vacuum tube where the particles circulate.

At this point we may consider two pos-
sible approximations for K (njn� 1) �
K (x0 + yn; T + (n� 1)� 0jx0 + yn�1 + (n� 2)� 0):

1. We substitute it with the free particleK0 assuming
that in the� 0 interval (� 0 � �) the motion is prac-
tically a free particle motion between the boundaries
(�b;+b).

2. We substitute it with the harmonic oscillator
K! (njn� 1) considering the harmonic motion of the
betatronic oscillations with frequency!=2�

We may notice that the convolution property (3) of the
Feynman propagator allows us to substitute the multiple
integral (that becomes a functional integral forn �! 1
and� 0 �! 0) with the single integral

K (x+ x0; T + � jx0; 0)

=

Z +b

�b

dyK (x+ x0; T + � jx0 + y; T )

�K (x0 + y; T jx0; 0) dy (4)

In this note we mainly discuss the case 1. and ob-
tain from equation (4) after introducing the Gaussian slit

exp
h
� y2

2b2

i
instead of the segment(�b;+b) we obtain

from

K (x+ x0; T + � jx0; 0)
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wherev0 = x0�x0

T andx0is the initial central point of the
beam at injection and can be chosen as the origin (x0 = 0)
of the transverse motion of the reference trajectory in the
test particle reference frame. Where as�h must be inter-
preted as the normalized beam emittance in the quantum-
like approach.

With an initial Gaussian profile (att = 0), the beam
wave function (normalized to 1) is
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r.m.s of the transverse beam and the final beam wave func-
tion is:
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The final local distribution of the beam that undergoes
the diffraction is therefore

�(x) = j�(x)j2 = BB� exp
��~�x2

�
(9)

where~� = �(C+C�) and the total probability per particle
is given by

P =
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One may notice that the probabilityP has the same order
of magnitude of the one computed in [2] if1p

�
is of the

order ofb.
Similarly we may consider the harmonic oscillator case

(betatronic oscillations) compute the diffraction probabil-
ity of the single particle from the beam wave function and
evaluate the probability of beam losses per particle.

2 PRELIMINARY ESTIMATES

Preliminary numerical estimates based on the above formu-
lae for the two different cases of LHC [3] and HIDIF [4]
designs give the following encouraging results:

LHC

Transverse Emittance,� = 3:75 mm mrad
Total EnergyE = 450 GeV
T = 25 nano sec.
b = 1:2 mm
P = 3:39� 10�5

HIDIF

Transverse Emittance,� = 13:5 mm mrad
Kinetic EnergyE = 5 GeV
T = 100 nano sec.
b = 1:0 mm
P = 2:37� 10�3

3 CONCLUSION

These preliminary numerical results are encouraging be-
cause they predict halo losses which seem under control.
Indeed the HIDIF scenario gives a total loss of beam power
per meter which is about a thousand higher than the LHC.
However in both cases the estimated losses appear much
smaller than the1 Watt/m.
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